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Besides the three-layered cubic (3C) and two-layered hexagonal (2H) forms, ZnS crystallizes into a 
number of hexagonal and rhombohedral polytypes. The polytypes of zinc sulphide are considered to 
generate during the 2H-3C structural transformation around axial screw dislocations with various 
Burgers vector strengths. By consideration of energies involved in producing axial screw dislocations, 
it has been pointed out that the growth of rhombohedral polytypes alone is favoured at the limit of 
higher unit-cell height and the growth of both the hexagonal and rhombohedral polytypes at the limit 
of lower height. The possibility of the relative occurrence of the hexagonal and rhombohedral polytypes, 
with the same unit-ceU heights but with different stacking modes of ZnS double layers, has also been 
discussed. 

Introduction 

Similarly to silicon carbide, cadmium iodide and other 
polytypic substances, ZnS has been investigated ex- 
tensively with respect to its polytypism. The polytypes 
in this compound have been considered to be inter- 
mediate states which grow during the 3C-2H struc- 
tural transformation. The 3C-2H transformation has 
been considered to be a phenomenon of diffuse first- 
order phase transformation (Smith, 1955; Hill, 1958). A 
direct observation of the phase transition from 3C-2H 
has been attempted by recrystallizing thin films of 3C 
type ZnS under an electron-microscope (Rai, Srivastava 
& Krishna, 1970), and it was found that this transfor- 
mation proceeds through micro-twins and polytypes 
at intermediate steps and a structurally perfect 2H 
phase was never obtained. By considering the ZnS 
polytypes as a result of a high order phase transforma- 
tion, Rai & Krishna (1968a, b) attempted to explain 
the polytypism in terms of Schneer's (1955) theory. 
Alexander, Mardix, Kalman & Steinberger (1970), 
however, expressed doubt about the applicability of 
Schneer's theory to the phenomenon of polytypism. 

Other theories, based on thermodynamic principles 
(e.g. Jagodzinski, 1954), were successful in explaining 
the phenomenon of polytypism only at a qualitative 
stage, and it was felt that they cannot deal with the 
individual structures of polytypes. The screw disloca- 
tion theory (Frank, 1951; Mitchell, 1957; Krishna & 
Verma, 1965), on the other hand, appeared to be 
simpler and more promising. In subsequent years, 
Daniels (1966), Mardix, Kalman & Steinberger (1968) 
and Alexander, Mardix, Kalman & Steinberger (1970) 
discussed the polytypism in terms of the axial and basal 
dislocations in the 2H structure. Despite considerable 
experimental support for these explanations, their vali- 
dity was also questioned (Rai, Agrawal & Krishna, 
1968; Rai 1971a, b; Dubey, Pandey & Singh, 1971). 
The author, therefore, proposed a more adequate 
mechanism involving an ordering of f.c.c, type 

microtwins, by which the complete growth and 
structural features of ZnS polytypes can be explained 
(Rai, 1971a, b). The formation of polytypes was attri- 
buted to the structural transformation (2H-3C) of a 
faulted 2H structure containing axial screw dislocations 
and it was shown that the cell height and the lattice 
type of polytypes are governed by the Burgers vector 
concerned. However, no consideration has been given 
by previous workers to the relative occurrence of hexa- 
gonal and rhombohedral polytypes, which involves an 
empirical relation, such that the observed number of 
rhombohedral polytypes is considerably greater than 
that of hexagonal ZnS polytypes. 

The aim of the present paper is to discuss the relative 
abundance of hexagonal and rhombohedral polytypes 
in terms of the Burgers vector strength of the axial 
screw dislocation, on the basis of the results given in 
the previous study (Rai, 1971 a, b). 

Growth of hexagonal and rhombohedral polytypes 
and their relative abundance 

When the 2H structure containing growth faults under- 
goes 2H-3C transformation, the transformed structure 
contains sets of microtwins of the f.c.c, type. The axial 
screw dislocation in this region exposes a growth step 
on the growth surface. The exposed ledge (step) con- 
sisting of f.c.c, type microtwins will motivate the end- 
less growth of a polytype with the structure consisting 
of a repeated assembly of the micro-twins forming the 
growth step. 

If the step height or the Burgers vector strength is 
N and the bottom and top layers of the exposed step 
are in the same orientation of stacking (i.e. A and A, 
B and B or C and C), then the rhombohedral polytypes 
3NR will be formed; while if these layers are in different 
orientations (i.e. A and B, B and C or C and A), the 
hexagonal polytypes NH will be formed (Krishna & 
Verma, 1965). It is evident that the probability of the 
top and bottom layers of the exposed ledge, being in 



K A I L A S H  N A T H  R A I  37 

different or ien ta t ion  f r o m  each other ,  should  be near ly  
twice the probabi l i ty  o f  these layers being in the same 
or ientat ion.  Thus  for  low values o f  N, the probabi l i ty  
o f  f inding a r h o m b o h e d r a l  po ly type  3NR is expected 
to be near ly  a ha l f  o f  the probabi l i ty  of  f inding a hexa-  
gonal  polytype,  NH. 

The Burgers  vector  s t rength  o f  an axial  screw dis- 
locat ion,  however ,  should  be subject  to energy rela- 
tions. F o r  simplicity,  one m a y  assume tha t  the value 
o f  the m a x i m u m  possible s t rength of  the Burgers  vector  
is equal  to N, and  all o ther  axial screw dis locat ions 
with Burgers  vector  s t rengths  smaller  than  this are 
possible.  Accord ing  to the screw dis locat ion mechan-  

ism, the unit-cell height of the hexagonal polytypes 
should always be equal to the Burgers vector strength 
of the axial screw dislocation. In the case of rhombo- 
hedral polytypes, however, the unit-cell height should 
always be three times the strength of axial screw dis- 
locations. Thus, if N is the maximum possible limit 
of Burgers vector strength, the hexagonal polytypes 
will be fo rmed  with unit-cell heights  only f r o m  4 to N, 
while for  the r h o m b o h e d r a l  po ly type  unit-cell  heights  
f rom 9 to 3 N  are possible.  I t  is clear  f rom the above  
a r g u m e n t  tha t  the polytypes  beyond  the unit-cell  
height  equal  to N, should  be only o f  r h o m b o h e d r a l  
symmet ry .  Below this limit, bo th  the hexagona l  and  

Table 1. ZnS Polytypes 
Rhombo- 

Hexagonal hedral 
Sample polytypes Zhdanov polytypes Zhdanov 
number (NH) symbol Reference (3 NR) symbol 

1 4H ( 2  2) (4) 9R ( 2  1)3 
2 6H ( 3 3) (4) 12R ( 3 1)3 
3 8H ( 4 4) (16) 15R ( 3 2)3 
4 10H ( 5 5) (3) lSR ( 4 2)3 
5 10H ( 8 2) (1) 21R ( 2 1 1 3)3 
6 10H ( 3  3 2 2) (9) 24R ( 5  3)3 
7 12H ( 6 6) (11) 24R ( 6 2)3 
8 12H ( 9 3) (11) 30R ( 6 4)3 
9 12H ( 4  4 2 2) (9) 30R ( 7  3)3 

10 14H ( 7  7) (12) 30R ( 4  2 2 2)3 
11 14H ( 4  3 3 4) (10) 36R ( 8  4)3 
12 14H ( 5  4 2 3) (1) 36R ( 7  5)3 
13 16H ( 8  8) (12) 36R (10 2)3 
14 16H (14 2) (15) 36R ( 5  2 2 3)3 
15 16H ( 5  3 3 5) (15) 36R ( 3  4 3 2)3 
16 16H ( 3 3 2 2 3 3) (15) 36R ( 6 2 2 2)3 
17 18H ( 5  4 4 5) (10) 42R ( 9  5)3 
18 18H ( 6  5 3 4) (10) 42R ( 8  6)3 
19 18H ( 6  3 3 6) (9) 42R (11 3)3 
20 18H ( 7  5 2 4) (10) 42R (12 2)3 
21 20H (10 10) (11) 42R ( 5  4 3 2)3 
22 20H (13 7) (7) 42R ( 6  4 2 2)3 
23 20H ( 3  4 7 6) (11) 42R ( 5  3 3 3)3 
24 20H ( 5  3 3 4 2 3) (13) 48R (13 3)3 
25 20H ( 5  2 2 3 6 2) (13) 48R (12 4)3 
26 20H ( 2 3 8 7) (11) 48R (10 6)3 
27 20H ( 7  3 3 7) (7) 48R ( 9  7)3 
28 20H ( 5  3 2 2 3 5) (7) 48R ( 6  4 3 3)3 
29 22H (20 2) (7) 48R ( 8  4 2 2)3 
30 22H (17 5) (7) 48R ( 7  3 3 3)3 
31 22H ( 7  4 4 7) (7) 48R ( 7  4 2 3)3 
32 24H (21 3) (8) 48R ( 4  3 3 2 2 2)3 
33 24H (15 9) (14) 54R (10 8)3 
34 24H ( 7  5 5 7) (12) 54R ( 7  5 3 3)3 
35 24H ( 9  5 6 4) (14) 54R ( 7  3 6 2)3 
36 24H ( 8  9 4 3) (14) 54R ( 5  5 5 3)3 
37 24H ( 7  10 5 2) (14) 60R (18 2)3 
38 24H (16 4 2 2) (14) 60R (17 3)3 
39 24H ( 6  5 3 5 3 2) (8) 60R (12 8)3 
40 24H ( 3  3 2 4 2 2 5 3) (14) 60R (11 9)3 
41 24H ( 3  3 4 2 2 4 3 3) (14) 60R (11 4 3 2)3 
42 24H ( 2  2 6 2 2 6 2 2) (7) 60R ( 9  3 5 3)3 
43 26H (17 4 2 3) (1) 60R ( 9  4 5 2)3 
44 26H ( 7 3 3 3 3 7) (7) 60R ( 9 5 3 3)3 
45 28H (23 5) (11) 60R ( 9  6 2 3)3 
46 28H ( 9  5 5 9) (1) 60R ( 9  3 6 2)3 
47 28H (21 3 2 2) (11) 60R ( 3  4 7 6)3 
48 44H (37 7) (11) 60R ( 7  8 2 3)3 
49 44H (17 4 17 6) (11) 60R ( 6  3 3 3 3 2)3 

Reference 
(6) 
(6) 
(4) 

(12) 
(6) 
(1) 

(16) 
(9) 
(7) 
(9) 

(11) 
(17) 
(17) 
(17) 
(17) 
(15) 
(9) 

(lO) 
(lO) 
(11) 
(10) 
(lO) 
(9) 

(15) 
(12) 
(15) 
(12) 

(9) 
(15) 

(9) 
(12) 
(12) 
(11) 
(11) 
(11) 

(7) 
(13) 
(11) 

(7) 
(7) 

(12) 
(9) 

(11) 
(9) 

(17) 
(11) 
(11) 
(17) 
(11) 
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Table 1 (cont.) 

Rhombo- 
hedral 

Sample polytypes Zhdanov 
number (3 NR) symbol Reference 

50* 60R ( 5  4 5 2 2 2)3 (11) 
51" 60R ( 8  4 2 2 2 2)3 (11) 
52* 60R ( 5  3 3 4 2 3)3 (12) 
53* 60R ( 5  2 2 3 6 2)3 (12) 
54* 60R ( 7  4 2 3 2 2)3 (7) 
55* 60R ( 5 2 2 3 5 3)3 (12) 
56* 60R (10 3 5 2)3 (11) 
57* 66R (15 7)3 (7) 
58* 66R ( 7  7 3 5)3 (5) 
59* 66R ( 7  7 5 3)3 (7) 
60* 66R ( 8  7 4 3)3 (7) 
61" 66R ( 5  5 4 2 3 3)3 (7) 
62* 66R ( 7  3 2 4 3 3)3 (2) 
63* 72R ( 9  5 4 6)3 (14) 
64* 72R ( 6  11 5 2)3 (14) 
65* 72R ( 6  5 3 3 5 2)3 (8) 
66* 72R ( 6  3 5 6 2 2)3 (8) 
67* 72R (10 7 3 4)3 (8) 
68* 72R (11 5 5 3)3 (8) 
69* 72R ( 7  3 5 2 5 2)3 (8) 
70* 72R ( 9 3 5 3 2 2)3 (8) 
71" 72R (14 5 2 3)3 (8) 
72* 72R (14 5 3 2)3 (8) 
73* 78R (13 5 5 3)3 (7) 
74* 78R (17 3 4 2)3 (7) 
75* 78R ( 7  7 3 3 4 2)3 (7) 
76* 78R ( 9 3 3 3 5 3)3 (7) 
77* 84R (25 3)3 (11) 
78* 84R (11 8 4 5)3 (11) 
79* l14R (35 3)3 (11) 
80* l14R (29 9)3 (11) 
81" l14R (21 9 6 2)3 (11) 
82* l14R (13 5 2 2 6 2 6 2)3 (11) 

* For these samples 
been observed. 

the hexagonal polytypes have not yet 

(1) Brafman, Alexander & Steinberger (1967). 
(2) Daniels (1966). 
(3) Evans & McKnight (1959). 
(4) Frondel & Palache (1950). 
(5) Farkas-Jahnke & Dornberger-Schiff (1970). 
(6) Haussiihl & Mailer (1963). 
(7) Kiflawi & Mardix (1969a). 
(8) Kiflawi & Mardix (1969b). 
(9) Kiflawi & Mardix (1970). 

(10) Kiflawi, Mardix & Kalman (1969). 
(11) Kiflawi, Mardix & Steinberger (1969). 
(12) Mardix, Alexander, Brafman & Steinberger (1967). 
(13) Mardix & Brafman (1967). 
(14) Mardix & Brafman (1968). 
(15) Mardix, Brafman & Steinberger (1967). 
(16) Mardix & Kiflawi (1970). 
(17) Mardix, Kiflawi & Kalman (1969). 

rhombohedral polytypes are possible, and the frequency 
of finding a hexagonal polytype will be nearly twice the 
frequency of finding a rhombohedral polytype. On 
average, therefore, the number of rhombohedral poly- 
types should be greater than the number of the hexa- 
gonal polytypes. 

On the basis of the above considerations, the rhom- 
bohedral and hexagonal polytypes should exhibit the 
following trend of occurrence: 

1. For smaller unit-cell heights, both the rhombo- 
hedral and hexagonal polytypes will be observed. 

2. In this region of unit-cell heights, the hexagonal 
polytypes should occur with a frequency approxi- 
mately twice that of the occurrence of rhombo- 
hedral polytypes. 

3. Beyond a certain limit of unit-cell height only 
rhombohedral polytypes should be observed. 

4. On average, the number of rhombohedral polytypes 
may exceed the number of hexagonal polytypes 
because of condition (3). 

However, as the above considerations are based on the 
statistical distribution of the Burgers vector strengths 
of axial screw dislocations, the results obtained should 
be tested only for a large number of observed poly- 
types. Fortunately, more than one hundred kinds of 
ZnS polytypes have so far been reported with comple- 
tely known atomic structures. These with their Rams- 
dell and Zhdanov symbols are listed in Table 1. It 
may thus be possible to test the above mentioned 
results and explain the relative abundance of hexa- 
gonal and rhombohedral ZnS polytypes in the light 
of the present arguments. 

The total number of these polytypes is 131. The 
maximum unit-cell height amongst all the hexagonal 
polytypes of ZnS so far discovered is equal to 44 
layers of ZnS (44H). The total number of hexagonal 
polytypes from 4H to 44H is 49, where 2H is not 
counted as it is taken as the parent phase. The number 
of rhombohedral polytypes within the same range of 
the unit-cell heights (i.e. from 9R to 42R) is 23 only. 
This is nearly a half of the number of hexagonal poly- 
types (i.e. a half of 49). The polytypes with the unit-cell 
heights beyond 44 layers of ZnS are all rhombohedral 
(non-hexagonal) and they are 59 in number. The total 
number of hexagonal polytypes (49) is thus consider- 
ably smaller than the total number 82 of rhombohedral 
polytypes. The relative occurrence of hexagonal and 
rhombohedral polytypes therefore, can be explained 
by a dislocation-controlled ordered twinning model 
(Rai, 1971a, b). 

It may also be interesting to consider the features 
of the relative abundance of the hexagonal and rhom- 
bohedral polytypes with the same unit-cell heights. 
Although only a few experimental data are available 
at present, it is expected that hexagonal polytypes will 
be encountered with a greater frequency than rhombo- 
hedral polytypes with the same unit-cell heights. The 
reason may be a greater number of possible rearrange- 
ments of the stacking sequence of ZnS layers in the 
case of hexagonal polytypes compared with the rhom- 
bohedral case. There are two main possible conditions 
to be taken into account in this connexion. The first 
is concerned with the minimum value of a number that 
can appear in the Zhdanov symbols for the ZnS poly- 
types. It can not be smaller than 2 in normal cases 
(Table 1). (There is no limit in the maximum value of 
these numbers.) The second is concerned with the 



K A I L A S H  NATH RAI 39 

number of layers which define a rhombohedral or 
hexagonal polytype. For example, the structure of a 
3NH (hexagonal) polytype will be completely deter- 
mined by the detailed stacking sequence of 3N close- 
packed layers of ZnS, while the structure of a rhombo- 
hedral polytype with the same unit-cell height (i.e. 3N 
layers of ZnS) will be precisely governed by the stacking 
sequence of only N layers. Under these two structural 
conditions (for the same unit-cell height), the possible 
number of rhombohedral polytypes turns out to be less 
than that of the hexagonal polytypes. In support of 
these arguments, it may be seen in Table 1 that there 
are three 12H polytypes and only one 12R; four 18H 
polytypes and only one 18R; eleven 24H polytypes 
and only two 24R polytypes. 

Discussion 

The problem of the relative occurrence of the rhombo- 
hedral and hexagonal polytypes has been discussed 
above in the light of the stability of the Burgers vector 
strengths of the screw dislocation, by taking account of 
their accidental occurrence in a specific manner which, 
in one case, produces hexagonal polytypes and, in the 
other case, rhombohedral polytypes. It has also been 
pointed out that the probability of arranging close- 
packed layers into various possible modes, subject to 
the strncturz 1 characteristics of ZnS polytypes, increases 
with the number of layers involved in a 3NH (3N 
layers) or in a 3NR (only N layers) polytype. Although 
the Burgers vector strength N is duly controlled by 
energy relations, the various possible modes of layer 
stacking occur statistically. Combining all these fac- 
tors, the present model may be considered of semi- 
statistical nature. 

In Table 1, it can be seen that the maximum unit- 
cell height of ZnS polytypes (44H, 114R) corresponds 
to a Burgers vector strength of less than 44 layers of 
ZnS. Although this list is not final, and it is felt that 
more ZnS polytypes with relatively larger unit-cell 
heights may be observed in future, it is worth asking 
why this limit to the unit-cell height occurs. This situa- 
tion can be understood in the light of the energy 
required to produce an axial screw dislocation. If N is 
the strength of the Burgers vector of an axial screw 
dislocation, the corresponding self energy is equal to 
(KN2/47r) In R/r, where N is to be understood now as 
the length of the Burgers vector instead of the corre- 
sponding number of unit layers, K is the elastic 
modulus, R is the radius of a crystal and r is the core 
radius of the screw dislocation. From this relation it is 
evident that the self energy of the screw dislocation 
increases proportional to N 2. Thus the formation of 
screw dislocations will become increasingly difficult if 
the value of N is too large. As a result, there should be 
a limit to the value of N, beyond which axial screw 
dislocations with higher Burgers vector strength will 
not be stable. Therefore, as the unit-cell height of poly- 
types is directly related to the Burgers vector strength 

N of axial screw dislocations, the polytypes corre- 
sponding to values of N higher than the limit will 
become unstable. It is probably for this reason that 
the polytypes with N larger than 44 have not yet been 
reported. However, the possibility of finding new poly- 
types corresponding to N > 4 4  in future cannot be 
excluded. At present there is no any physical theory to 
predict accurately the upper limit of N. On the other 
hand, it is likely that the polytypes with smaller unit- 
cell heights will occur more frequently than those having 
larger unit-cell heights. Forinstance, the frequent occur- 
rence of 6H and 4H polytypes may be attributed to the 
small energies required in their formation by the screw 
dislocation mechanism. In fact, Alexander et al. (1970) 
have explained the relative abundance of 4H and 6H 
on the same assumption. As the zinc sulphide polytypes 
have behaviour (Rai & Krishna, 1968a, b) in common 
with the polytypes of silicon carbide, it is expected that 
some of the results for ZnS may also be valid for SiC 
polytypes. 

The results in this paper have been derived on the 
assumption that the polytypeS are formed as a result 
of axial screw dislocations operating in 2H type crys- 
tals. Although very little information is available re- 
garding the role of axial screw dislocations in the 
growth of polytypes, there is still a growing belief that 
screw dislocations are solely responsible for the for- 
mation of ZnS polytypes (Mardix, 1969; Alexander 
et al., 1970). Mardix (1969) has also noticed the exsi- 
tence of large screw dislocations in polytypic crystals 
of ZnS. Hanaoka and his co-workers (Hanaoka & 
Vand, 1968; Hanaoka, Raymond & Greer, 1969) have 
also reached similar conclusions from their studies of 
lead iodide polytypes. The growth of ZnS single 
crystals is, however, known to occur around a single 
screw dislocation (Lendvay & Kov'acs 1965, 1970; 
Mardix & Kiflawi, 1970). 

One may finally point out some disagreements be- 
tween theory and experimental observations. Although 
it has been pointed out that the number of hexagonal 
polytypes should be larger than the number of rhom- 
bohedral polytypes for the same unit-cell height, Table 
1 indicates that, while there are three 30R, six 36R and 
seven 42R polytypes, there are none of the hexagonal 
polytypes. However, the number of ZnS polytypes 
listed in the Table 1 is not final. At the present stage, 
it seems to be only the result of chance that various 
30H and 42H polytypes have not been discovered 
while corresponding rhombohedral polytypes have been 
observed. 

The author wishes to record his sincere thanks to the 
C.S.I.R. and the University Grants Commission of 
India for timely financial assistance. 
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The Influence of Thermal Diffuse Scattering, Secondary Extinction and Crystallite Size 
Distribution on X-ray Line Profiles 
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A method is given for correcting the integral intensities of X-ray reflexions from platelets of single crys- 
tals or powders for secondary extinction and thermal diffuse scattering (TDS). The line profiles are 
calculated as folding integrals from theoretical functions considering the crystallite size distribution, 
the total absorption, and TDS. By means of variation of the unknown parameters (fraction of TDS to 
the overall intensity, mean crystallite size and their polydispersity, and absorption coefficient, secondary 
extinction included) the calculated function has to fit the measured line profile. A detailed description 
of this method according to Bradaczek and Hosemann is given after introducing some modifications 
such as collimation errors of the primary beam and anisotropy of the lattice vibrations. The method is 
applied to measured line profiles of NaCI and LiF single crystals. 

Introduction 

From absolltte X-ray intensities the structural ampli- 
tudes cannot be obtained with accuracies better than 
1% until the present (Jennings, 1969). The reasons for 
this are systematic errors such as insufficient correc- 
tions of absorption (primary and secondary extinction) 
and of thermal diffuse scattering. The influence of 
these corrections on the measured integral intensities 
can be considerable. It is therefore necessary to measure 
these corrections. By the method of Bradaczek & 
Hosemann (1968) one obtains directly the true absorp- 

tion coefficient, the influence of thermal diffuse scat- 
tering, and the crystallite size distribution function by 
means of a line-profile analysis. Contrary to the 
known methods (Bragg, James & Bosanquet, 1921), 
where the angular distribution of the mosaic blocks 
influences the profile of the rocking curve, here the 
reflexions will be measured by means of a film in a 
fixed position. In the present paper this method is 
refined and applied to the line-profile analysis of NaC1 
and LiF single crystals. By careful development and 
analysis of several films of the same reflexion much 
more information is available than by counter meas- 


